Распознавание типов объектов на радиотепловых изображениях в системе нескольких радиометров

С.М. Гудков

Рязанский государственный радиотехнический университет,

Рязань, ул. Гагарина, 59/1, РГРТУ,

Email: s.m.gudkov@yandex.ru

В распределенных системах радиотеплового обнаружения и распознавания наземных объектов с помощью нескольких пассивных радиометров миллиметрового диапазона, возникает необходимость распознавания полученных радиометрами изображений по их соответствию тем или иным объектам.

Цель работы - предложить оптимальный подход к решению задачи распознавания изображений и дать вычислительный алгоритм последовательного перебора вариантов.

Введение

Пассивная система дистанционного наблюдения за наземными объектами с помощью нескольких радиометров миллиметрового диапазона длин волн [1] применяется для повышения надежности и обладают преимуществом скрытности. Из-за большого разнообразия типов объектов на подстилающей поверхности возникает необходимость их распознавания и сопровождения, в случае их движения.

В работе рассматривается система, состоящая из нескольких, разнесенных на различные расстояния между собой, сканирующих радиометров или радиометров с антенной решеткой. Такая система применяется для обнаружения и распознавания наземных объектов по их тепловому контрасту на фоне местности, а также сопровождения обнаруженных объектов [2].

Постановка задачи и критерий оптимальности

Система из Q пространственно распределенных радиометров сканирует K объектов на участке земной поверхности. Все объекты попадают в участок, перекрывающийся диаграммами направленности антенн со всех радиометров. Антенны q-го радиометра $(q=\overline{1,Q})$ принимают электромагнитное излучение от каждого k-го объекта $(k=\overline{1,K})$, расположенного в исследуемой зоне. В результате сканирования исследуемой зоны формируется радиотепловое изображение (РТИ) в виде матрицы $\mathbf{Y}_{q,k} = \{\mathbf{y}_{q,k}(\mathbf{i},\mathbf{j})\}$, $\mathbf{i},\mathbf{j} \in \mathbf{D}_{q,k}$, где $D_{q,k}$ — область РТИ k-го объекта в матрице РТИ зоны обзора q-го радиометра; $\mathbf{y}_{q,k}(\mathbf{i},\mathbf{j})$ — радиояркостная температура k-го объекта. Элементы изображения $\mathbf{Y}_{q,k} = \{\mathbf{y}_{q,k}(\mathbf{i},\mathbf{j})\}$ удовлетворяют модели, отражающей интегральный характер измерений по ширине диаграммы направленности антенны (ДНА):

$$y_{q,k}(i,j) = \sum_{i_1 = -m}^{m} \sum_{j_1 = -n}^{n} \alpha(i_1, j_1) x_{q,k}(i + i_1, j + j_1) + p_q(i, j),$$
(1)

где $\alpha(i, j)$ – общая для всех радиометров аппаратная функция (A Φ);

 $X_{q,k} = \{x_{q,k}(i,j)\}$ — ненаблюдаемое изображение объекта;

 $p_{_k}(i,j)$ — внутренние шумы аппаратуры k-го радиометра, обусловленные его собственной конструкцией.

В результате формируются матрицы наблюдений K объектов в Q радиометрах и пользователи ЭВМ с помощью специального программного обеспечения вручную или

автоматически [2] помещают полученные РТИ $Y_{q,k}$ в прямоугольные области D одинакового размера, совмещая центры $Y_{q,k}$ с центром D. В результате формируются множества наблюдений G_1 , G_2 ,,, G_Q , где $G_Q = \{Y_{q,k}, k = \overline{1,K}\}$, $Y_{q,k} = \{y_{q,k}(i,j)\}$, $i,j \in D$, $q = \overline{1,Q}$.

Предварительно сформированы множества $\Omega_1,\,\Omega_2,...,\,\Omega_M$ эталонных изображений M типов объектов $(M\geq K)$. Каждое ρ -е множество Ω р состоит из s-х эталонных изображений $X_{\rho,S}^*=\{x_{\rho,S}^*(i,j)\},\,i,j\in D$, объекта ρ -го типа $(\rho=\overline{1,M})$, полученных в зависимости от L ракурсов его наблюдения $(s=\overline{1,L},L>Q)$.

Задача заключается в распределении РТИ $Y_{q,k}$, $q=\overline{1,Q}$, $k=\overline{1,K}$, по их принадлежности эталонным изображениям объектов $X_{\rho,S}^*=\{x_{\rho,S}^*(i,j)\}$, $\rho=\overline{1,M}$, $s=\overline{1,L}$.

Оптимальный подход к решению задачи

Подход основан на переборе вариантов выборок и сводится к следующему.

Из множеств наблюдений $G_1, G_2,..., G_Q$ мощности K выбираются изображения по одному из каждого множества. Формируется g-я выборка $Y_{q,kq}(g)$, $k_q \in \{1,2,...,K\}$, $q=\overline{1,Q}$. Количество таких выборок определяется числом размещений из K по Q с повторениями: $\widetilde{A}_{\kappa}^Q = K^Q$.

Каждой g-й выборке наблюдаемых изображений $Y_{q,kq}(g)$, $q=\overline{1,Q}$, ставится в соответствие t-я выборка эталонных изображений $X_{\rho,Sq}^*(t)$, $q=\overline{1,Q}$, взятая из каждого множества $\Omega \rho$ числом размещений из L по Q: $A_L^Q=L\cdot(L-1)\cdot(L-2)\cdots(L-Q+1)$.

Правдоподобие соответствия двух выборок совмещаемых изображений одному объекту в g-м, t-м варианте перебора характеризуется суммарным показателем вида:

$$J(g,t) = \sum_{q=1}^{Q} \mu_q I_q(Y_{q,kq}(g), X_{\rho q,Sq}^*(t)), \qquad (2)$$

где $k_a \in \{1, 2, ..., K\}$.

Среди N вариантов выбираются K непересекающихся пар выборок, соответствующих K объектам в смысле минимума суммарного показателя $J = \sum_{k=1}^K J(g_k, t_k)$. Для этого требуется перебрать варианты с числом сочетаний из N по K: $C_N^K = N!/(K!(N-K)!)$ с проверкой несовпадения номеров элементов выборок.

Вычислительный алгоритм

Алгоритм позволяет упростить перебор вариантов и сводится к следующему:

- 1. В наиболее значимом q_1 -м радиометре с коэффициентом μ_1 выбирается k_1 -е изображение Y_{q1k1} с наилучшим контрастом.
- 2. Выбранному изображению Y_{q1k1} ставятся в соответствие s-е эталонные изображения объекта 1-го типа ($\rho=1$) $X_{1,S}^*$, $s=\overline{1,L}$. Сопоставляются пары изображений $Y_{q1,k1}$ и $X_{1,S}^*$ по критерию наилучшей близости $I_q(Y_{q1,k1},X_{1,S}^*)$, $s=\overline{1,L}$, и запоминаются значения показателей I_q . Среди L вариантов соответствия сохраняется один вариант с наименьшим значением показателя I_q .
- 3. Далее РТИ $Y_{q1,k1}$ ставятся в соответствие эталонные изображения $X_{2,S}^*$, $s=\overline{1,L}$, объекта 2-го типа ($\rho=2$) и после сопоставлений изображений запоминаются показатели

 $I_q(Y_{q1,k1},X_{2,S}^*)$, $s=\overline{1,L}$. Запоминаются номера ρ , s в функции ρ , отвечающие наименьшему значению I_q , а также сам показатель: ρ_{\min} , $s_{\min}(\rho)$, I_{\min} .

- 4. Аналогичные операции продолжаются для $\rho = 3,..., M$. После чего заполняются массивы: $N\rho(q_1, k_1) = \rho_{\min}$, $Ns(q_1, k_1) = s_{\min}(\rho_{\min})$.
- 5. Затем выбирается k_2 -е изображение $Y_{q1,k2}$, имеющее значение в порядке приоритета. РТИ $Y_{q1,k2}$ сравнивается с s-ми эталонными изображениями $X_{\rho,S}^*$, $s=\overline{1,L}$, взятыми из множеств с номерами $\rho=1,2,...,M$, причем пара номеров ρ , s не должна совпадать с парой запомненных номеров $N\rho(q_1,k_1)$, $Ns(q_1,k_1)$, что обеспечивает точность сравнений.
- 6. Из всех вариантов сравнений $Y_{q1k2} \sim X_{\rho,S}^*$, $\rho = \overline{1,M}$, сохраняется вариант с наименьшим значением показателя I_q . Запоминаются номера: $N\rho(q_1, k_2) = \rho_{\min}$, $Ns(q_1, k_2) = s_{\min}(\rho_{\min})$.
- 7. Далее выбираются остальные изображения $Y_{q_1k_3},...,Y_{q_1k_K}$ в q_1 -м радиометре. Запоминаются номера соответствий $N\rho(q_1,k_3)$, $Ns(q_1,k_3)$, ..., $N\rho(q_1,k_K)$, $Ns(q_1,k_K)$.
- 8. Действия повторяются для всех оставшихся радиометров. В результате в массиве $\mathrm{N} \rho(q,\,k)$, $q=\overline{1,Q}$, $k=\overline{1,K}$, запоминаются номера ρ -х объектов, к которым отнесены наблюдения $Y_{q,k}$. При отсутствии ошибок распознавания каждый номер ρ должен встречаться Q раз в массиве $\mathrm{N} \rho(q,\,k)$ при $q=\overline{1,Q}$.

Экспериментальное исследование алгоритма показало, что вероятность правильной классификации (распознавания) наблюдаемых изображений зависит как от правила перебора вариантов, так и от используемых показателей близости (схожести) пар изображений.

Заключение

Предложен оптимальный подход к решению задачи распознавания РТИ, основанный на суммарном показателе правдоподобия соответствий наблюдаемых и эталонных изображений, и дан вычислительный алгоритм, позволяющий сократить перебор вариантов. Результаты исследования могут найти применение как в существующих, так и в перспективных разработках радиометрических систем [3, 4].

Работа выполнена при методической поддержке профессора кафедры АИТУ РГРТУ Клочко В.К. Программное обеспечение эксперимента осуществлялось инженером Кошелевым А.А.

Литература

- 1. Пассивная радиолокация: методы обнаружения объектов / Под ред. Р. П. Быстрова и А. В. Соколова. М.: Радиотехника, 2008. 320 с.
- 2. Математические методы восстановления и обработки изображений в радиотеплоопто-электронных системах / В. К. Клочко. Рязань: РГРТУ, 2009. 228 с.
- 3. Клочко В.К., Гудков С.М., Кошелев А.А. Алгоритмы формирования изображений объектов в радиометре с двумя антеннами // Цифровая обработка сигналов. 2017. № 1. С. 18 -21.
- 4. Клочко В.К., Гудков С.М. Повышение эффективности формирования изображений в радиометре со сканирующими антеннами // Радиотехника. 2017. № 5. С. 158 165.