Всероссийская открытая научная конференция «Современные проблемы дистанционного зондирования, радиолокации, распространения и дифракции волн» - Муром 2021

Оценивание вероятностных характеристик приема КАМ-сигналов при распространении по трансионосферным радиолиниям

Л.Е. Назаров^{1,2}, В.В. Батанов²

¹Фрязинский филиал Института радиотехники и электроники им. В.А. Котельникова РАН 1414190, г. Фрязино, Московская обл., пл. Введенского, 1 E-mail: levnaz2018<u>@mail.ru</u> ² AO «Информационные спутниковые системы», г. Железногорск 662972, г. Железногорск Красноярского края, ул. Ленина, 52 E-mail: bvitaly@inbox.ru

Рассмотрены модели узкополосных трансионосферных радиолиний, влияние которых обусловливает замирания сигналов при их распространении за счет случайных флуктуаций электронной плотности ионосферных неоднородностей. Приведена методика оценивания вероятности ошибочного приема сигналов с квадратурно-амплитудной манипуляцией с использованием рассмотренных моделей замираний сигналов. Произведены оценки энергетических потерь при распространении по ионосферным спутниковым радиолиниям с параметрами индекса сцинтилляции, типичными для L- частотного диапазона, по отношению к распространению в свободном пространстве.

Ключевые слова: ионосфера, КАМ-сигналы, замирания сигналов, вариации амплитуд, вариации фаз, распределение Релея-Райса, вероятность ошибочного приема

Estimation of the probabilistic characteristics of QAM signal reception during propagation along transionosphere radio lines

L.E. Nazarov¹, V.V. Batanov

 ¹ Fryazinsky Branch of the V.I. V.A. Kotelnikov RAS 1414190, Fryazino, Moscow region, pl. Vvedensky, 1 E-mail: levnaz2018@mail.ru
 ² JSC "Information Satellite Systems", Zheleznogorsk 662972, Zheleznogorsk, Krasnoyarsk Territory, st. Lenin, 52 E-mail: bvitaly@inbox.ru

Models of narrow-band transionosphere radio lines are considered, the influence of which causes fading of signals during their propagation due to random fluctuations of the electron density of ionosphere irregularities. A technique for estimating the probability of erroneous reception of signals with quadrature-amplitude shift keying using the considered models of signal fading is presented. Estimates of energy losses during propagation along ionosphere satellite radio lines with scintillation index parameters typical for the L-frequency range with respect to propagation in free space are made. *Keywords: ionosphere, QAM-signals, fading, error-performances*

Введение

При распространении по спутниковым радиолиниям передачи сигналы подвергаются действию искажающих факторов в дополнение к влиянию канальных тепловых шумов, снижающих верность передачи информации по отношению к распространению в свободном пространстве [1]. Одно из важных искажений обусловлено многолучевостью распространения за счет рассеяния и отражения сигналов на ионосферных неоднородностях, которая порождает временные вариации амплитуд (замирания сигналов) [1-5].

Статистические модели замираний дают возможность оценить энергетические потери по отношению к распространению сигналов в свободном пространстве, которые необходимо учитывать при расчете энергетических бюджетов спутниковых

радиолиний. Созданию и развитию моделей помех данного типа посвящен ряд работ [2,36,7]. В работе [5] приведены соответствующие оценки энергетических потерь для сигналов с многофазовой манипуляцией (ФМ-сигналы), широко используемых в информационных спутниковых системах.

Сигналы с квадратурной амплитудной манипуляцией (КАМ-сигналы) составляют альтернативу ФМ-сигналам относительно вероятностных характеристик при приеме при распространении в свободном пространстве [8]. Это обусловливает широкое использование КАМ-сигналов в информационных спутниковых системах.

Актуальной является проблема применения моделей замираний для оценивания вероятностных характеристик приема класса КАМ-сигналов при распространении по трансионосферным линиям и их сравнительный анализ по отношению к распространению в свободном пространстве.

На вход наземного приемного пункта поступает сигнал s'(t), содержащий сумму s(t) и его копий с различными амплитудами, временными задержками и начальными фазами за счет рассеяния и отражения на ионосферных неоднородностях

$$s'(t) = \operatorname{Re}(A(t)\exp(j(2\pi f t + \varphi_{c}(t))) + n(t).$$
(1)

Здесь $f, A(t), \varphi_{C}(t)$ - центральная частота, комплексная амплитуда и фаза сигнальной составляющей за счет влияния ионосферных неоднородностей; n(t) - канальный аддитивный белый гауссовский шум. Амплитуда $\dot{A}(t)$ и фаза $\varphi_{C}(t)$ представляют случайные стационарные процессы на анализируемом интервале времени.

На рис.1 в качестве примера приведена кривая зависимости мощности сигналов I(t) от времени, полученная путем обработки сигналов спутниковой информационной системы в *P*-частотном диапазоне. Вариации значений I(t) (замирания амплитуды сигналов), достигающие 5 дБ и более, обусловлены рассматриваемым влиянием ионосферной линии распространения.

Рис. 1. Фрагмент зависимости мощности сигналов *I*(*t*) от времени, полученной путем обработки сигналов спутниковой информационной системы в *P*-частотном диапазоне

Замирания сигналов приводят к деградации вероятностных характеристик P_6 при передаче информации по отношению к распространению в свободном пространстве [8].

Статистические характеристики замираний определяются рядом параметров центральной частотой *f*, солнечной активностью, сезонным и суточным временем и др. [2]. При создании и развитии статистических моделей замираний сигналов с учетом этих факторов используются два подхода - на основе аналитического описания распространения сигналов [2] и на основе использования эмпирических соотношений относительно законов плотности распределения амплитуды p(A) [3].

Модели замираний сигналов из второго класса связывают параметры эмпирических плотностей распределения p(A) с индексом сцинтилляции $S_4^2 = (\langle A^4 \rangle - (\langle A^2 \rangle)^2)/(\langle A^2 \rangle)^2$ [3]. Здесь $\langle \rangle$ - операция усреднения по ансамблю сигналов либо по времени, полагая случайный процесс A эргодическим.

Известно соотношение, определяющее зависимость индекса S_4 от частоты f для слабых и средних замираний [3] $S_4 \approx f^{-1.5}$.

Относительно значений индекса S_4 замирания классифицируются как слабые для $S_4 < 0.3$, средние для $0.3 < S_4 < 0.6$ и сильные для $S_4 > 0.6$ [3].

Для описания плотности распределения p(A) наиболее широко используется *m* - распределение Накагами [7,17]

$$p(A) = \frac{2}{\Gamma(m)} \left(\frac{m}{\sigma^2}\right)^m A^{2m-1} \exp\left(-\frac{mA^2}{\sigma^2}\right).$$
(2)

Здесь σ^2 - средняя мощность сигнальных составляющих в составе $s'(t); m \ge 1/2$ параметр, задаваемый соотношением $m = \frac{\Omega^2}{\langle (A^2 - \Omega)^2 \rangle}, \ \Omega = \langle A^2 \rangle$.

Параметры S_4 и *m* связаны соотношением [3] $m = 1/S_4^2$.

Распределение Накагами аппроксимируется законом Релея-Райса [8]

$$p(A) = \frac{A}{\sigma_{\rm p}^2} \exp\left(-\frac{A^2 + A_0^2}{2\sigma_{\rm p}^2}\right) I_0\left(\frac{AA_0}{\sigma_{\rm p}^2}\right). \tag{3}$$

Здесь A_0 - амплитуда регулярной сигнальной составляющей; σ_p^2 - мощность многолучевых компонент в составе s'(t); $I_0(x)$ - модифицированная функция Бесселя первого рода нулевого порядка.

Диапазон значений замираний амплитуд сигналов $P_{\rm Д}$ относительно амплитуды A_0 определяется соотношением [3] $P_{\rm Д} = 13.8 S_4^{1.26}$ (дБ).

Распределяется соотпольтить разда (3) характеризуется коэффициентом Райса $c = A_0^2 / 2\sigma_p^2$, который связан с параметром *m* соотношением $c = \frac{1}{2} \frac{\sqrt{m^2 - m}}{m - \sqrt{m^2 - m}}$.

Вероятность ошибки P_6 при приеме КАМ-сигналов с объемом $M = 2^k$ имеет вид [8]

$$P_{0}(A) = \frac{2(L-1)}{L\log 2L} Q\left(\sqrt{\frac{3\log 2L}{L^{2}-1}} \frac{A^{2}T_{c}}{N_{0}}\right).$$
(4)

Здесь A - средняя амплитуда КАМ-сигналов; L - количество уровней амплитуды в одном измерении (для четных k справедливо соотношение $L = \sqrt{M}$); $T_{\rm c}$ - длительность сигналов; $Q(x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} \exp(-y^2/2) dy$.

Для амплитуды A в виде случайной стационарной величины с плотностью распределения p(A) средняя вероятность ошибки P_6 с учетом замираний задается

соотношением [8]
$$P_{\overline{0}} = \int_{0}^{\infty} P_{\overline{0}}(A)p(A)dA$$
.

Результаты оценивания вероятностей ошибки P_6 получены для ряда параметров k КАМ-сигналов с использованием моделей замираний и соответствующих оценок энергетических потерь по отношению к распространению в свободном пространстве.

Для P- частотного диапазона в соответствии с экспериментальными данными для нормальной ионосферы средних широт индекс S_4 принимает значения до 0.7, для полярных областей значения S_4 могут достигать 1 [4]. Соответствующие значения S_4 для L- частотного диапазона оцениваются на основе известных значений индекса сцинтилляции для P- частотного диапазона.

В таблице 1 приведены статистические характеристики замираний сигналов для нормальной ионосферы средних широт для P- (400 МГц) и L- (1500 МГц) частотных диапазонов: значения параметра m для распределения Накагами (2), значения коэффициентов c для распределения Релея-Райса (3). Следует отметить, что значения замираний $P_{\rm д}$ для P частотного диапазона достигают 8.5 дБ, это может значительно снижать надежность передачи информации по данным радиолиниям или даже разрушить функционирование информационных систем.

Табли	ца	1.	Стат	гистические	характеристики	замираний	сигналов	для	
нормальной ионосферы средних широт									

		T Y	
Параметры	<i>P</i> -частотныи диапазон	L-частотный диапазон	
	$(f = 400 \mathrm{M}\Gamma$ ц)	$(f = 1500 \mathrm{M}\Gamma$ ц)	
<i>S</i> ₄	до 0.70	до 0.095	
т	>2.0	>110.0	
С	>1.2	>99.2	
<i>Р</i> _д (дБ)	до 8.5	до 0.8	

На рис.2, приведены вероятности ошибки P_6 при приеме КАМ-сигналов с объемом $M = 2^4$. По оси абсцисс отложены значения параметра сигнал/помеха $\frac{E_6}{N_0} = \frac{A^2 T_c}{2kN_0}$, здесь E_6 - энергия на бит.

Рис. 2. Вероятности ошибки P_6 при когерентном приеме КАМ-сигналов с объемом $M = 2^4$: 1 - распространение в свободном пространстве; 2 - канал с замираниями, параметр $S_4 = 0.1$; 3 - канал с замираниями, параметр $S_4 = 0.2$; 4 канал с замираниями, параметр $S_4 = 0.3$.

Кривая 1 на рис.2 соответствует КАМ-сигналам с объемом $M = 2^2$ при распространении в свободном пространстве - вероятность $P_6 = 10^{-4}$ обеспечивается при отношении $E_6 / N_0 = 8.5$ дБ. Кривая 2 соответствует распространению сигналов по ионосферной линии с параметром $S_4 = 0.1$. Энергетические потери при распространении по рассматриваемой модели линии по отношению к кривой 1 для $P_6 = 10^{-4}$ достигает 0.5 дБ. Кривая 3 соответствует распространению сигналов по ионосферной линии с параметром $S_4 = 0.2$. В этом случае энергетические потери по отношению к кривой 1 для $P_6 = 10^{-4}$ достигает 1.25 дБ. Кривая 4 соответствует распространению сигналов по ионосферной линии с параметром линии с параметром $S_4 = 0.3$. В этом случае энергетические потери по отношению к кривой 1 для $P_6 = 10^{-4}$ достигает 3.75 дБ. При уменьшении значений P_6 энергетические потери увеличиваются.

Выводы

Рассмотрены модели узкополосных спутниковых ионосферных радиолиний, влияние которых обусловливает амплитудные вариации сигналов (замирания сигналов) за счет случайных временных и пространственных флуктуаций электронной плотности ионосферных неоднородностей. Параметры эмпирических моделей замираний относительно амплитуды сигналов на выходе ионосферной спутниковой радиолинии связаны с коэффициентом сцинтилляции сигналов.

С использованием моделей замираний сигналов приведена методика оценивания вероятности ошибочного приема КАМ-сигналов при приеме. С использованием данной методики произведены оценки энергетических потерь при распространении по ионосферным спутниковым радиолиниям с параметрами индекса сцинтилляции, типичными для L- частотного диапазона, по отношению к распространению в свободном пространстве. Оценочные значения энергетических потерь за счет влияния ионосферы достигают 3.5...3.8 дБ при вероятности ошибочного приема бита

 $P_{\tilde{6}} = 0.0001$ для КАМ-сигналов с объемом $M = 2^2$, $M = 2^4$, $M = 2^6$ и значений коэффициента сцинтилляции до 0.3 дБ.

Работа выполнена при поддержке гранта РФФИ (проект № 20-07-00525).

Литература

1. Назаров Л. Е., Батанов В. В. Вероятностные характеристики обнаружения радиоимпульсов при распространении по ионосферным линиям передачи спутниковых систем связи. // Радиотехника и электроника. 2017. Т. 62. №9. Стр. 866-874.

2. Rino C.L. The Theory of Scintillation with Applications in Remote Sensing. John Wiley & Sons, Hoboken, New Jersey, 2011. 244 p.

3. Ionospheric propagation data and prediction methods required for the design of satellite services and systems. Recommendation ITU-R P.531-11. Electronic Publication, Geneva, 2012, 24 p.

4. Crane R.K. Ionospheric Scintillation. // Proceeding of IEEE. 1977. V.2. P. 180-199.

5. Назаров Л. Е., Смирнов В. М. Вероятностные характеристики приема сигналов с замиранием при распространении по спутниковым ионосферным радиолиниям. // Физические основы приборостроения. 2020. Т.9. № 4(38). С. 18–23.

6. Кутуза Б.Г., Мошков АВ, Пожидаев ВН. Комбинированный метод, который устраняет влияние ионосферы при обработке сигналов бортовых радиолокаторов Рдиапазона с синтезированной апертурой. // Радиотехника и электроника. 2015. Т. 60. №9. Стр. 889-895.

7. Бова Ю. И., Крюковский А. С., Лукин Д. С. Распространение частотномодулированного излучения электромагнитных волн в ионосфере Земли с учетом поглощения и внешнего магнитного поля. // Радиотехника и электроника. 2019. Т. 4. №1. Стр. 3-7.

8. Скляр Б. Цифровая связь. Теоретические основы и практическое применение. Пер. с англ. М.: Издательский дом "Вильямс", 2003. 1104 с.