Всероссийская открытая научная конференция «Современные проблемы дистанционного зондирования, радиолокации, распространения и дифракции волн» - Муром 2023

УДК 533.951, 537.868

DOI: 10.24412/2304-0297-2023-1-83-87

Пороговые мощности волны накачки при О- и Х- нагреве с частотой близкой критической частоте слоя F2 и гирогармонике электронов при возбуждении плазменных волн

Т.Д. Борисова¹, Н.Ф. Благовещенская¹, А.С. Калишин¹

¹ Арктический и антарктический научно-исследовательский институт 199397, г. Санкт-Петербург, ул. Беринга, 38. E-mail: <u>borisova@aari.ru</u>

Представлены результаты экспериментальных исследований возбуждения продольных плазменных волн (ленгмюровских и ионно-акустических) в высокоширотной F области ионосферы, вызванных воздействием мощных KB радиоволн обыкновенной (O-мода) или необыкновенной (X-мода) поляризации. Частота излучения комплекса f_H EISCAT/Heating (г. Тромсе, Норвегия) была близка критической частоте слоя F2 $f_H \sim f_o$ F2 и частоте гирорезонанса электронов $f_H \sim nf_{ce}$. Определены пороговые (минимальные) значения электрического поля волны накачки, необходимые для возбуждения плазменных (ленгмюровских) E_{ionPL} и ионно-акустических E_{ionIL} волн.

Ключевые слова: Высокоширотная ионосфера, мощная КВ радиоволна, электрическое поле, ленгмюровская волна, ионно-акустическая волна, радар некогерентного рассеяния радиоволн, EISCAT

The threshold values of the electric field of high-power shortwave radio waves by Omode or X-mode polarization HF heating near the critical frequency of the F2 layer and the electron gyroresonance frequency by the excitation of Langmuir and ion-acoustic plasma waves

T.D. Borisova¹, N.F. Blagoveshchenskaya¹, A.S. Kalishin¹

¹ Arctic and Antarctic Research Institute.

We present experimental results related to the studies of the excitation of elongated plasma waves (Langmuir and ion-acoustic) in the high latitude ionosphere F-region induced by the ordinary (O-mode) and extraordinary (X-mode) HF heating near the critical frequency of the F2 layer and electron gyroresonance frequency. Experiments have been carried out at the EISCAT/Heating facility located near Tromsø by using the power stepping of effective radiated power. The threshold values of the electric field required for the excitation of Langmuir and ion-acoustic plasma waves, were determined.

Keywords: High latitude ionosphere, powerful HF radio wave, electric field, Langmuir wave, ionacoustic wave, incoherent scatter, EISCAT

Введение

В настоящее время продолжаются интенсивные исследования процессов нелинейного взаимодействия мощной КВ радиоволны с ионосферной плазмой. Модификации верхней (F-область) ионосферы радиоволнами мощными КВ обыкновенной (О- мода) или необыкновенной (Х- мода) поляризации приводит к широкого спектра различных искусственных неустойчивостей и генерации неоднородностей, например, к генерации искусственных ионосферных неоднородностей, возбуждению плазменных волн, искусственного радиоизлучения ионосферы и т.д. [1, 2 и цитируемая литература]. Возбуждение и развитие параметрических распадных неустойчивостей: периодической стрикционной (англ. parametric decay instability, PDI) и апериодической стрикционной (англ. oscillating two stream instability, OTSI) [1] в нагревных экспериментах регистрируются в спектрах радара некогерентного рассеяния радиоволн (HP) как инициированные нагревом плазменные линии (HF-induced plasma lines, HFPL) и усиленные ионно-акустические линии (HF-enhanced ion lines, HFIL), что является достоверным признаком возбуждения продольных плазменных волн (ленгмюровских и ионно-акустических). В работе представлены результаты определения экспериментальных порогов возбуждения (минимальных значений напряженности электрического поля мощной КВ радиоволны), необходимых для возбуждения ленгмюровских и ионно-акустических волн при О- и Хнагреве высокоширотной F области ионосферы.

Результаты наблюдений

Наблюдения условий и характеристик возбуждения плазменных ленгмюровских и ионно–акустических волн на высотах F слоя высокоширотной ионосферы в периоды экспериментов 26 февраля 2013 г. и 20 октября 2012 г. на нагревном стенде EISCAT/Heating EISCAT выполнены радаром HP (930 МГц). 26 февраля 2013 г. мощная KB радиоволна излучалась на частоте $f_H = 7.1$ МГц, близкой к критической частоте слоя F2 ($f_H / f_oF2 \sim 1$), и превышала частоту пятой гирогармоники электронов ($f_H > 5f_{ce}$). 20 октября 2012 г. $f_H = 7.953$ МГц, была ниже f_oF2 ($f_H / f_oF2 \sim 0.89 - 0.94$) и ниже частоты шестой гирогармоники электронов ($f_H < 6f_{ce}$). Нагревной стенд EISCAT/Heating излучал мощные KB радиоволны в направлении магнитного зенита, циклами 10 минут нагрев, 5 минут пауза. Мощность излучения ERP ступенчато изменялась в цикле нагрева.

На рис.1 показаны результаты спектральной обработки сигналов радара НР 20 октября 2012 г. с 13.30 до 14.30 UT в виде высотно-временных распределений спектральных максимумов ленгмюровских волн $S_{PI}(t,h)$ (рис.1, *a*) и ионноакустических волн $S_{IL0}(t,h)$, $S_{ILD}(t,h)$, $S_{ILU}(t,h)$ для максимумов, несмещенного относительно нулевой частоты и смещенных в отрицательную и положительную стороны (рис.1, c, b, d). Значения S_{PL} и S_{IL} приводятся в относительных единицах (о.е.) в логарифмическом масштабе. Схема изменения мощности излучения ERP с учетом поляризации нагревного сигнала и уровня электрического поля волны накачки в ионосфере Eion, рассчитанного с учетом поглощения в ниже лежащих слоях показаны на рис. 1, е. В циклах Х- нагрева наблюдается возрастание высоты возбуждения HFPL (рис.1, *a*). Особенностью Х- нагрева явилось усиление максимума S_{IL0} (рис.1, *c*), возрастание которого указывает на возбуждение в резонансной области двухпотоковой неустойчивости (OTSI). Интенсивности S_{ILD}, S_{ILU}, S_{ILU} и S_{PL} в циклах X-нагрева на порядок выше, чем S_{II}, и S_{PL} в циклах О- нагрева. В моменты включений для волны накачки О- моды наблюдались «эффекты включения» – кратковременные всплески интенсивностей рассеянных сигналов S_{II}, и S_{PL} (<200ms), которые являются типичным проявлением неустойчивости PDI при О- нагреве. Эффекты «включения» при Хнагреве не наблюдались и проявления HFIL и HFPL начинались только через 10 - 20 с после включения передатчика нагревного стенда.

Расчет электрического поля мощной КВ радиоволны Eion в ионосфере

Напряженность электрического поля мощной КВ радиоволны стенда EISCAT/Heating с учетом потерь радиоволны при распространении в ионосфере определяется выражением [3, 4]

$$E_{ion}\left[\frac{V}{m}\right] = \frac{0.25\sqrt{ERP[kW]}}{h[km]} \cdot e^{-A},$$

Рис. 1. Данные EISCAT радара НР для 20 октября 2012 г. с 13.30 до 14.30 UT: высотно – временные распределения максимумов спектральных линий плазменного (ленгмюровского) а) – SPL и ионно – акустического диапазонов: b) –SIL_D, c) –SIL₀, d) – SIL_U в интервале высот 190–270 км. е) Изменение foF2(t); f) - схемы изменения ERP, E_{ion} и поляризации нагревного сигнала.

где h – высота расположения возмущенной ионосферной области от поверхности Земли, A – потери напряженности радиоволны (дБ) на пути распространения s, рассчитываются как

 $A = -8.68 \, J\kappa \cdot ds,$

где к – мнимая часть волнового вектора $\mathbf{k}=\omega \cdot \mathbf{n}/\mathbf{c}$, ds – расстояние вдоль пути распространения, $\omega=2\pi f$, f – частота радиосигнала, n = (μ + i χ) – комплексный показатель преломления, μ – действительная часть показателя преломления, χ – мнимая часть показателя преломления, с – скорость света и для к используется приближенное выражение

$$\kappa = \frac{e^2}{2\varepsilon_0 m_e c} \cdot \frac{1}{\mu} \cdot \frac{N_e v_e}{v_e^2 + (\omega \pm \omega_{ce} \cos \theta)^2}.$$

При расчете траекторий распространения и поглощения КВ-радиоволны текущие значения параметров высотных профилей концентрации $N_e(h)$ и температуры $T_e(h)$ электронов для каждого нагревного цикла определялись по данным радара НР (разрешение по высоте 3 км). Вычисления частот соударений электронов $v_e(h)$ выполнены с учетом выражений, представленных в [5, 6], данных измерений радаром НР и модели MSIS [7].

Численные оценки электрического поля мощной КВ-радиоволны на высотах отражения с учетом затухания на пути распространения волны в D-, E- и F-слоях ионосферы выполнены в приближении геометрической оптики для слоистой ионосферы и реализованы в среде MatLab. Поскольку мы рассматриваем прямое распространение волны накачки или до высоты отражения, или до максимума слоя F2, траекторные расчеты упростили, используя закон Снеллиуса и теорему Брейта—Тьюва [8]. Вычисления показателя преломления выполнены с учетом влияния магнитного поля и частоты соударений электронов [5].

Оценка поглощения электрического поля E_{ion} мощной КВ-радиоволны проводилась с учетом изменений *ERP* каждую минуту излучения нагревного комплекса EISCAT/Heating. Результаты вычислений поглощения радиоволны в ионосфере, А, и наименьшие уровни поля E_{ion} , необходимые для возбуждения ленгмюровских и ионно-акустических плазменных волн, E_{ionPL} и E_{ionIL} , для циклов нагрева 26 февраля 2013 г. и 20 октября 2012 г. представлены в Таблице.

Таблица – Оценки поглощения мощной КВ радиоволны в ионосфере, А, значения ERP и наименьшие уровни электрических E_{ionPL} и E_{ionIL} для О- и Х- циклов нагрева 26 февраля 2013 г. и 20 октября 2012 г.

Поляризация,		A,	ERP MBT	ERP MBt
период цикла	$f_{\rm H}/f_oF2$	dB	(start/end)	(start/end)
нагрева, UT			$E_{ionPL} B/M$	$E_{ionIL} B/M$
1	2	3	4	5
26 февраля 2013 г.				
0		1.0	(186/186)	(380/380)
12.31-12.41	0.99		0.45 / 0.45	0.64/ 0.64
Х		7.8	(186/186)	(380/380)
12.46-12.56	1.03		0.22 / 0.22	0.32/ 0.32
0		1.5	(186/83)	(380/186)
13.01-13.11	1.05		0.43 /0.28	0.6/0.43
Х		3.5	(186/186)	(186/380)
13.16-13.26	0.99		0.34 / 0.34	0.34 / 0.48
20 октября 2012 г.				
0		1.5	(410/176)	(585/585)
13.31-13.41	0.89		0.57 / 0.37	0.68/0.68
Х		3.8	(176/59)	(176/176)
13.46-13.56	0.91		0.29/ 0.17	0.29/ 0.29
0		1.0	(176/176)	(293/293)
14.01-14.11	0.91		0.39/ 0.39	0.5/ 0.5
X		5.7	(176/59)	(293/293)
14.16-14.26	0.94		0.22/ 0.13	0.29/ 0.29

Анализ данных вычислений значений минимальных E_{ion} , необходимых для непрерывного возбуждения плазменных максимумов (ленгмюровских и ионноакустических) в экспериментах 26.02.13г. и 20.10.12г. показал, что возбуждение ленгмюровских максимумов начиналось при более низких значениях ERP излучения волны накачки, чем возбуждение ионно-акустических волн. Минимальные значения составляли: $E_{ionPL} \sim 0.4 - 0.57$ В/м и $E_{ionIL} \sim 0.5 - 0.68$ В/м для О- моды нагрева и $E_{ionPL} \sim 0.22 - 0.34$ В/м и $E_{ionIL} \sim 0.29 - 0.34$ В/м для Х- моды соответственно. Значения E_{ionPL} и E_{ionIL} в циклах О- нагрева выше, чем в циклах Х- нагрева. При Х- нагреве для возбуждения ленгмюровских и ионных волн при различных условиях $f_H/f_0F2\sim1$ и $f_H/f_0F2<1$ требуются близкие минимальные значения $E_{ion} \sim (0.22 - 0.34$ В/м).

Выводы

Представлены результаты экспериментов на нагревном стенде EISCAT/Heating 26 февраля 2013 г. ($f_{\rm H}/f_{\rm o}$ F2~1 и $f_{\rm H}$ >5 $f_{\rm ce}$ на 0.26 МГц) и 20 октября 2012 г. ($f_{\rm H}/f_{\rm o}$ F2<1 и $f_{\rm H}$ <6 $f_{\rm ce}$ на 0.187 МГц) при переменном О- /Х- нагреве F-области высокоширотной ионосферы в направлении магнитного зенита и ступенчатом изменении эффективной мощности излучения. Выполнены оценки порогов возбуждения (минимальных значений напряженности электрического поля мощной КВ-радиоволны в ионосфере), необходимых для возбуждения ленгмюровских и ионно-акустических волн при О- и Х-нагреве F-области высокоширотной ионосферы. Оценки получены с учетом потерь мощной волны при распространении в нижележащих слоях.

Работа выполнена при поддержке гранта Российского научного фонда № 22-17-00020, https://rscf.ru/project/22-17-00020/.

Литература

1. Гуревич А.В. Нелинейные явления в ионосфере // УФН. 2007. Т. 177, № 11. С. 1145– 1177. DOI: <u>10.3367/UFNr.0177. 200711a.1145</u>.

2. Blagoveshchenskaya N.F. Perturbing the high-latitude upper ionosphere (F region) with powerful HF radio waves: A 25-year collaboration with EISCAT // URSI Radio Science Bulletin. 2020. Vol. 373. P. 40–55. DOI: 10.23919/URSIRSB.2020.9318436.

3. Robinson T.R. The heating of the high latitude ionosphere by high power radio waves // *Phys. Rep.* 1989. Vol. 179, no. 2-3. P. 79–209.

4. Zawdie K.A., Drob D.P., Siskind D.E., Coker C. Calculating the absorption of HF radio waves in the ionosphere // *Radio Sci.* 2017. Vol. 52. P. 767–783. DOI: 10.1002/2017RS006256

5. Гинзбург В.Л. Распространение электромагнитных волн в плазме – М.: Наука, 1967. 684 с.

6. Schunk R.W., Nagy A.F. Ionospheres: Physics, Plasma Physics, and Chemistry – Cambridge: Cambridge Univ. Press, 2000. 554 p.

7. <u>https://ccmc.gsfc.nasa.gov/modelweb/models/msis_vitmo.php</u>

8. Дэвис К. Радиоволны в ионосфере – М.: Мир, 1973. 504 с.