Всероссийская открытая научная конференция «Современные проблемы дистанционного зондирования, радиолокации, распространения и дифракции волн» - Муром 2024

УДК: 551.510.535

DOI: 10.24412/2304-0297-2024-1-134-139

Характеристики мелкомасштабных искусственных ионосферных неоднородностей при О- и Х-нагреве стенда EISCAT/Heating

И.М. Егоров¹, Н.Ф. Благовещенская¹, А.С. Калишин¹, Т.Д. Борисова¹, Г.А. Загорский¹

¹ Арктический и антарктический научно-исследовательский институт 199397, г. С. Петербург, ул. Беринга, 38 E-mail: egorovneva@gmail.com

Представлены результаты экспериментальных исследований мелкомасштабных искусственных ионосферных неоднородностей (МИИН) при воздействии на высокоширотную F-область ионосферы мощных KB радиоволн обыкновенной (O-мода) и необыкновенной (Xмода) поляризации. Для модификации ионосферы использовался нагревоной стенд EISCAT/heating. Диагностика МИИН осуществлялась с помощью многоканального KB donnлеровского приемного комплекса, сети станций наклонного зондирования ионосферы, когерентного коротковолнового радара CUTLUSS. Показано, что, как при O-нагреве, так и при X-нагреве, в возмущенной области генерируются мелкомасштабные искусственные неоднородности различных размеров. Выполнено сравнение характеристик МИИН. Обсуждаются возможные механизмы генерации МИИН при X-нагреве. Ключевые слова: КВ нагревной комплекс, мощная КВ радиоволна, ракурсно-рассеянные сигналы, мелкомасштабные искусственные ионосферные неоднородности, дистанционная duaгностика

Features of small-scale artificial field-aligned irregularities induced by the O- and X-mode HF pumping at the EISCAT/Heating facility

I.M. Egorov¹, N.F. Blagoveshchenskaya¹, A.S. Kalishin¹, T.D. Borisova¹, G.A. Zagorskiy¹

¹Arctic and Antarctic Research Institute 38, Bering str., St. Petersburg, Russia, 199397

We present the results of experimental studies of small-scale artificial field-aligned irregularities (AFAIs) induced by an ordinary (O-mode) and extraordinary (X-mode) polarized HF pump waves. The research was made with: the EISCAT/Heating facility in Tromso; the multi-channel HF Doppler radio scatter receiver; the net of chirp ionospheric oblique; the CUTLASS radar in special mode of operation. It was shown that both, the O- and X-mode HF pumping, are led to the small-scale artificial field-aligned irregularities generation. The comparative characteristics of AFAIs were made. A possible mechanisms for the AFAIs generation induced by an X-mode HF pump waves are discussed.

Keywords: high power HF waves, artificial ionospheric irregularities, bi-static HF Doppler radio scatter observations, Doppler frequencies shifts of scattered signals, remote sensing

Введение

Эксперименты по модификации F-области ионосферы обычно производятся с использованием мощных коротковолновых радиоволн (КВ) обыкновенной (О-мода) поляризации. При О-нагреве волна накачки эффективно взаимодействует с ионосферной плазмой в области F2 слоя на высотах между высотой отражения КВ волн и высотой верхнего гибридного резонанса. Это приводит к возбуждению тепловой параметрической (резонансной) неустойчивости (ТПИ), ответственной за генерацию

вытянутых вдоль силовых линий магнитного поля Земли мелкомасштабных искусственных ионосферных неоднородностей (далее МИИН) [1 - 4].

Известно, что КВ волна О-поляризации отражается от ионосферы на высотах, где частота нагрева f_H становится равной плазменной частоте ионосферы f_0 , $f_0^2=f_H^2$. Отражение Х-волны происходит на высоте, где локальная плазменная частота определяется как $f_0^2 = f_H \times (f_H - f_{ce})$, где f_{ce} - гирочастота электронов. В связи с этим высота отражения Х-волны находится ниже высоты верхнего гибридного резонанса и высоты отражения О-волны. Вследствие этого Х-волна накачки не может вызывать генерацию МИИН за счет ТПИ.

Однако результаты недавних экспериментов на нагревном стенде EISCAT/heating убедительно продемонстрировали, что генерация МИИН происходит и при Х-нагреве высокоширотной F-области ионосферы МИИН [5, 6].

В данной работе представлены результаты сравнения характеристик МИИН при Ои Х-нагреве методом ракурсного рассеяния диагностических КВ сигналов на МИИН с помощью станций наклонного зондирования ионосферы, когерентного КВ доплеровского радара CUTLASS (SuperDARN) и многоканального доплеровского комплекса «Спектр».

Описание эксперимента

Эксперимент проводился 18 февраля 2013 г. в вечерние часы при спокойных магнитных условиях. Для модификации высокоширотной F-области ионосферы использовался нагревной стенд EISCAT/Heating, расположенный в г. Тромсе, северная Норвегия (69,6 с.ш., 19,2 в.д.) [7]. Мощная КВ радиоволна О- или Х-поляризации излучалась на частоте $f_H = 4544$ кГц в направлении магнитного зенита (диаграмма направленности антенны была наклонена на 12° от вертикали к югу) циклами 10 минут нагрев, 5 минут пауза. Излучение осуществлялось фазированной антенной решёткой ФАР 2, имеющей ширину диаграммы направленности 12 - 14° (на уровне – 3дБ), обеспечивая эффективную мощность излучения $P_{эф\phi} \sim 190$ MBT. В период эксперимента по данным ионозонда в Тромсе критическая частота слоя F2 (f_{0F2}) падала от 4,6 до 4,2 МГц. О-нагрев проводился на частотах вблизи f_{0F2}, а X-нагрев при f_H > f_{0F2}.

Для дистанционного диагностирования эффектов воздействия мощных КВ радиоволн использовались приемные КВ доплеровские комплексы разработанные в ААНИИ, предназначенные для регистрации МИИН методом ракурсного рассеяния диагностических КВ сигналов. В качестве передающих устройств использовались радиопередатчики мировой сети радиовещательных станций КВ радиодиапазона, работающих в режиме амплитудной модуляции. Стационарный многоканальный доплеровский комплекс «Спектр» [8] установлен на научно-исследовательской станции «Горьковская», расположенной в Ленинградской области (60,27 с.ш., 29,38 в.д.). Расстояние от нагревного стенда EISCAT/Heating до НИС «Горьковская» составляет 1140 км. В период эксперимента прием ракурсно-рассеянных на МИИН сигналов проводился также в Ловозеро (Мурманская обл.) с использованием мобильного доплеровского комплекса.

Для диагностики МИИН также использовался когерентный КВ доплеровский радар CUTLASS (SuperDARN) [9] в Ханкасалми, Финляндии (63 с.ш., 27в.д.), находящийся примерно на 1000 км южнее КВ нагревного стенда в Тромсе. В период работы группы ученых из ФГБУ «ААНИИ» на нагревном стенде EISCAT/Heating радар CUTLASS работал в нестандартном режиме с излучением на узконаправленную антенну с шириной луча примерно 3,3°, ориентированную на искусственно возмущенную область ионосферы над г. Тромсе («луч» 5) с временным разрешением 3 с и разрешением по дальности 15 км. Измерения проводились одновременно на частотах 9,9-10 МГц и 13,2-

13,3 МГц, что позволяло контролировать поведение МИИН с поперечными к магнитному полю размерами $l_{\perp} \sim 15$ м и $l_{\perp} \sim 11,1$ м ($l_{\perp} = c/2f$, где f – частота радара). Выбор и контроль частот нагрева осуществлялся по данным ионозонда в г. Тромсе.

Помимо выше перечисленных средств для регистрации ракурсно-рассеянных сигналов на МИИН применялась автоматизированная цифровая аппаратура наклонного зондирования ионосферы сигналами с ЛЧМ (далее Комплекс НЗИ с ЛЧМ, ЛЧМ комплекс), предназначенная для измерения методом наклонного зондирования ионосферы (НЗИ) и получения цифровых ионограмм, характеризующих состояние ионосферного канала распространения КВ радиоволн [10]. В период эксперимента использовался приемо-передающий комплекс НЗИ с ЛЧМ, установленный на геофизической станции НИС «Горьковская». Он принимал сигналы ЛЧМ передатчика из Швеции (65,82 с.ш., 21,70 в.д.), мощность которого была ~ 200 Вт.

Результаты измерений

Ракурсно-рассеянные на МИИН сигналы (далее РРС), на получаемых КВ доплеровским комплексом динамических спектрах, проявляются в виде дополнительных треков, сдвинутых в отрицательную или положительную сторону от нулевой частоты, соответствующей распространению сигнала по дуге большого круга. Дополнительные треки наблюдаются в моменты излучения нагревного комплекса и отсутствуют в паузах. Величина и знак доплеровского смещения частоты определяется вектором скорости движения мелкомасштабных искусственных ионосферных неоднородностей(далее МИИН) в искусственно возмущенной области ионосферы.

Спектры РРС, полученные во время работы стенда EISCAT/Heating 18 февраля 2013 г. при альтернативном О- и Х-нагреве представлены на рис. 1. В качестве диагностических передатчиков использовались КВ радиостанции, расположенные в районе г. Иссодун и Ватикан и излучавшие в режиме амплитудной модуляции на частотах 15180 кГц и 15535 кГц соответственно. Циклы излучения волны накачки комплекса EISCAT/Heating обозначены белыми прямоугольниками.

Как следует из рис. 1 (левая часть), при О-нагреве РРС регистрировались практически одновременно с включением нагревного стенда и исчезали после его выключения, что говорит о малой инерционности процесса возбуждения МИИН. При Хнагреве (см. рис. 1, правая часть) времена нарастания МИИН были порядка 1 мин, а времена релаксации составляли единицы минут. В обоих случаях, рассеяние сигналов происходило, на неоднородностях с поперечными размерами $l_{\perp} \sim 10$ м.

Рис. 2 показывает данные радара CUTLASS (SuperDARN), полученные в тот же день наблюдений - 18 февраля 2013 г. с 14:30 – 18:00 UT. Из рис. 2 следует, что горизонтальный размер области, занятой МИИН при О-нагреве, составляет L = 90 – 120 км, в то время как при Х-нагреве размер области L был меньше, L = 60 - 90 км. Характерной особенностью поведения МИИН при Х-нагреве является большое время релаксации МИИН, которое превышает длительность пауз (5 мин), т.е. МИИН регистрируются непрерывно с увеличением их интенсивностей в циклах нагрева.

Эффекты при О- и Х-нагреве на ионограммах наклонного зондирования на трассе Швеция – НИС «Горьковская» представлены на рис. 3. Они отображаются как дополнительные треки с бо́льшим групповым временем задержки относительно сигналов различных мод, распространяющихся по дуге большого круга. Эта разница во временах задержки получается из-за разной длины траекторий распространения «прямой» волны и волны, рассеянной на МИИН в возмущенной области до места приема. Время одного сеанса работы передатчика составляло 2 минуты. Обе ионограммы получены в моменты начала циклов нагрева стенда EISCAT/Heating. Левая ионограмма получена во время начала цикла О- нагрева в 14:31 UT, правая – во время начала цикла

Х-нагрева 16:46 UT. Как видно из рис. 3, РРС при О-нагреве регистрировались в диапазоне частот 10 – 15 МГц, что соответствует МИИН с поперечными к магнитному полю размерами $l_{\perp} \sim 10$ - 15 м. При Х-нагреве размер неоднородностей был больше, чем при О-нагреве. РРС наблюдались в диапазоне 9 – 11,5 МГц, что соответствует $l_{\perp} \sim 13$ -17м.

Рис. 1. Зарегистрированные РРС на трассах Иссодун – Тромсе – Ловозеро и Ватикан – Тромсе – Ловозеро 18 февраля 2013 года в период эксперимента на стенде EISCAT/Heating при О- и Х-нагреве на частоте 4544 кГц, Р_{эфф} ~190 МВт

Рис. 2. Данные радара CUTLASS (SuperDARN) (луч 5) при работе на частотах 10 и 13 МГц 18 февраля 2013 года во время проведения экспериментальных работ на стенде EISCAT/Heating при О- и Х- нагреве на частоте 4544 кГц, Рэфф ~190 МВт

Рис. 3. Ионограмы наклонного зондирования ионосферы на радиотрассе Швеция – НИС «Горьковская» 18 февраля 2013 г. в период эксперимента на стенде EISCAT/Heating при О- и Х-нагреве на частоте 4544 кГц, Р_{эфф} ~190 МВт

Заключение

Представлены результаты исследования и сравнения характеристик МИИН при О- и Х-нагреве высокоширотной F-области ионосферы методом ракурсного и обратного рассеяния диагностических КВ сигналов на МИИН по данным наблюдений с использованием многоканального КВ доплеровского комплекса, станций наклонного зондирования ионосферы и радара CUTLASS.

Совместное использование различных средств дистанционной диагностики МИИН позволяет более всесторонне и полно исследовать поведение и характеристики МИИН при О- и Х-нагреве, включая размер искусственно возмущенной области ионосферы, занятой МИИН, диапазон частот, в котором наблюдаются РРС, тонкую структуру РРС, интенсивности, времена нарастания и релаксации МИИН высокоширотной F-области ионосферы.

Установлено, что МИИН при О- и X-нагреве имеют различные характеристики и механизмы генерации.

Исследование выполнено за счет гранта Российского научного фонда № 22-17-00020, <u>https://rscf.ru/project/22-17-00020/</u>

Литература

1. Erukhimov L.M., Metelev S.A., Myasnikov E.N., Mityakov N.A., Frolov V.L. Artificial ionospheric turbulence (review) // Radiophysics and Quantum Electronics. 1987. T. 30. № 2. P. 156–171.

2. Robinson T.R. The heating of the high latitude ionosphere by high power radio waves // Physics Reports. 1989. Vol. 179. P. 79–209.

3. Gurevich A.V. Nonlinear effects in the ionosphere // Physics-Uspekhi. 2007. T. 50. № 11. P. 1091-1121.

 Фролов В.Л., Бахметьева Н.В., Беликович В.В. и др. Модификация ионосферы Земли мощным коротковолновым радиоизлучением // Конференции и симпозиумы. УФН. 2007.
Blagoveshchenskaya N. F., Borisova T. D., Yeoman T., Rietveld M.T., IvanovaI.M., Baddeley L.J. Artificial field-aligned irregularities in the high-latitude F region of the ionosphere induced by an X-mode HF heater wave // Geophys. Res. Lett. 2011. Vol. 38. L08802. doi:10.1029/2011GL046724

6. Blagoveshchenskaya N.F., Borisova T.D., Yeoman T.K. Häggström I., Kalishin A.S. Modification of the high latitude ionosphere F region by X-mode powerful HF radio waves: Experimental results from multiinstrument diagnostics // J. Atmos. Sol.-Terr. Phys. 2015. Vol. 135. P. 50–63.

7. Rietveld M.T., Senior A., Markkanen J., Westman A. New capabilities of the upgraded EISCAT high-power HF facility // Radio Science. 2016. Vol. 51(9). P. 1533–1546.

8. Калишин А. С., Благовещенская Н. Ф., Борисова Т. Д., Рогов Д. Д. Дистанционные методы диагностики эффектов воздействия высокоширотных нагревных комплексов // Метеорология и гидрология. 2021. №4.

9. Stereo CUTLASS: A new capability for the SuperDARN radars / M. Lester [et al] // Ann. Geophys. 2004. Vol. 22. P. 459–473.

10. Rogov D.D., Blagoveshchenskaya N.F., Yeoman T.K Features of Artificial Ionospheric Irregularities Induced by Powerful HF Radio // Radiation and Scattering of Electromagnetic Waves (RSEMW). 24–28 June 2019. 10.1109/RSEMW.2019.8792727