Попов И.Е.

Научный руководитель — д.ф.-м.н., профессор К.А. Потехин Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых Россия, г. Владимир, Проспект Строителей, 11 ivan-popov-mi-121@outlook.com

Алгоритм кодирования формы полимино

Разбиения плоскости на полимино активно исследуются и в математике [1], и в кристаллографии [2]. В кристаллографии разбиения плоскости на полимино используют при изучении и описании взаимного расположения молекул в молекулярных слоях кристаллов.

Уже известны буквенные коды формы полимино, но они предназначены в основном для кодирования формы полимино малого размера. В то же время, для математического моделирования формы молекулы с помощью полимино, иногда возникает необходимость использования полимио с большим количеством клеток.

В данном докладе предлагается новый алгоритм кодирования формы полимино, основанный на использовании чисел в четверичной системе счисления.

Кодируется периметр полимино. Внешней (им) стороне (нам) каждого квадрата полимино ставится в соответствие цифра 3, 2, 1 или 0 так как возможны только четыре ориентации свободных сторон квадратов полимино: справа налево (3), снизу вверх(2), слева направо(1) и сверху вниз(0). Один из квадратов полимино выбирается за начало отсчета, от которого периметр полимино кодируется против часовой стрелки. В результате, получается число в четверичной системе счисления. Количество разрядов этого числа соответствует количеству внешних сторон квадратов полимино, а величина числа зависит от выбора начала отсчета. Поэтому для характеристики формы полимино выбирается наибольшее из полученных чисел.

Для каждого асимметричного полимино существуют семь его симметрично эквивалентных аналогов. Мы предлагаем для восьми симметрично эквивалентных аналогов использовать единый код: приведенный код полимино (максимальное число из восьми полученных чисел). Зеркально симметричные и центрально симметричные полимино тоже имеют симметрично эквивалентные аналоги (четыре эквивалента). Для характеристики их формы также используется приведенный код полимино. Использование приведенных кодов позволяет быстро и однозначно среди большого количества разбиений плоскости на полимино выявлять полиморфные модификации этих разбиений. Следовательно, появляется возможность прогнозирования полиморфных модификаций плоских молекулярных слоев в кристаллических структурах.

Приведенные коды полимино можно ранжировать по их убыванию. В результате, можно формировать таблицы кодов полимино, в которых каждая группа полимино получает свой порядковый номер. Такой номер полимино можно использовать вместо его приведенного кода («длинного» числа) в тексте статьи при описании полиморфных модификаций разбиений плоскости.

В таблице 1 представлены приведенные коды гексамино, выявленных в разбиениях плоскости на два симметрично эквивалентных гексамино.

В 322-х симметрически независимых разбиениях плоскости на два симметрично эквивалентных гексамино выявлено 35 вариантов гексамино.

К достоинствам предлагаемого способа кодирования формы полимино можно отнести простоту раскодирования. Достаточно каждой цифре кода поставить в соответствие (нарисовать) единичный отрезок. В результате получаем, что полимино N_1 , это прямоугольник, стороны которого равны 6 и 1. Полимино N_2 3, это тоже прямоугольник, но его стороны равны 3 и 2.

Таблица 1. Приведенные коды гексамино

w 1. Inputs Administration and the community					
N	Код гексамино	N	Код гексамино	N	Код гексамино
1	33333321111110	13	33323211012100	25	33232121103010
2	33333221011110	14	33322321100110	26	33032321210110
3	33333212101110	15	33322211030110	27	33032321121010
4	33333211210110	16	33321232110010	28	333322110110
5	33332321101110	17	33321222100010	29	333321211010
6	33332221001110	18	33303221210110	30	333232111010
7	33332210121010	19	33303221121010	31	333222101010
8	33332210112100	20	33303221112100	32	333221210010
9	33332122100110	21	33233221011010	33	332322110010
10	33323321110110	22	33233212101010	34	332321210100
11	33323221010110	23	33233211210010	35	3332211100
12	33323212100110	24	33232321101010		· · · · · · · · · · · · · · · · · · ·

Литература

- 1. Gambini I., Vuillon L. An algorithm for deciding if a polyomino tiles the plane by translations // RAIRO Theoretical Informatics and Applications. 2007. T. 41, № 2. C. 147–155.
- 2. Малеев А. В. Алгоритм и компьютерная программа перебора вариантов упаковок полимино в плоскости // Кристаллография. 2013. Т. 58, № 5. С. 749–756.